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Q1: What is the Nambu-Jona-Lasinio (NJL) model?
A1: A quark model based on relativistic field theory.
Characteristic: Contact interactions between quarks. Easy to
handle, very successful to describe hadrons, nuclear matter
and quark matter.
Q2: Who invented this model?
A2: Nambu and Jona-Lasinio in 1960, as a model for
elementary nucleons. Re-discovered in the 1980th as a
model for quarks.
Q3: What is this model good for?
A3: We can describe

● hadrons (nucleons, mesons) as bound states of quarks

● nuclear matter and nuclei in terms of quarks (⇒ Quark
nuclear physics; Medium modifications)

● phases of strongly interacting matter at high densities
(⇒ Neutron stars, supernova matter)
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● Success of constituent quark model. Basic inputs are:
Nonrelativistic quarks (Mu ≃Md ≃ 300 − 400 MeV), and
symmetry of wave functions.
But : Quarks of QCD are almost massless (m ≃ 0) and
relativistic, and structure of wave functions should emerge
from dynamics. ⇒ Generate constituent quark masses and
wave functions dynamically from interactions.

● The Lagrangian of any quark model should be symmetric
under the global gauge transformations

ψ(x) → eiαψ(x) , ψ(x) → ei~α·~τψ(x)

where ψ = (ψu, ψd) is the flavor SU(2) quark field. ⇒
conserved currents jµ = ψγµψ and ~jµ = ψγµ~τψ.

● The interaction Lagrangian should also be symmetric under
the chiral SUA(2) transformation

ψ(x) → ei~α·~τγ5ψ(x)

If only the quark mass term −mψψ breaks this symmetry, we
are led to the PCAC relation: ∂µ

(

ψγµγ5~τψ
)

= 2mψiγ5~τψ.
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● This chiral symmetry should be spontaneously broken and
the pion should emerge as a Goldstone boson .
The above chiral SUA(2) transformation can be expressed as
a rotation in the plane of σ = ψψ and ~π = ψiγ5~τψ :

Choose
vacuum here

If the energy of the system along a circle is lower than at the
origin (σ = π = 0), we may choose one of the states on the
circle as the “vacuum ”. (In the figure: σ 6= 0, π = 0.) A small
chiral rotation (moving up along the circle) leads to another
(degenerate) vacuum, which differs from the original one by
the appearance of a π field ⇒ π is a massless “Goldstone
boson”.

● The chiral UA(1) symmetry ψ → exp(iαγ5)ψ is unwanted (no isoscalar
Goldstone boson is observed!), and should be broken explicitly by the
interaction.



Motivations: Interaction (1)

❖ Introduction

❖ Motivations

❖ Lagrangian

❖ Lagrangian

❖ Mean field
approximation

❖ Gap equation

❖ Symmetry
breaking

❖ Mesons

❖ Pion form factor
❖ Quark distrubution
in pion

❖ Evolution

❖ Comments

5 / 23

● How to model the elementary qq interaction ? By meson
exchange, like the nuclear force?
But : Mesons are also composite particles!
⇒ Meson exchange between quarks should be the result, but
not the input of the model.

● QCD based Dyson-Schwinger theories indicate: qq
interaction looks like gluon exchange, but with a modified
“running coupling ” αs(k):

V (k) =
λa

2
γµ

(

αs(k)

k2

)

γµλ
a

2
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Interaction is very strong at small k: Infrared enhancement .
⇒ For low momenta (k < Λ ≃ 1 GeV) we may approximate

where G is a 4-Fermi coupling constant. This looks like a contact
interaction, but restricted to low momenta!

Using the flavor SU(2) quark field ψ = (ψu, ψd), we can write the
corresponding Lagrangian density as

L = ψ (i 6∇ −m)ψ −G

(

ψ
λa

2
γµψ

)2

From Wick’s theorem: There are 2 diagrams for the interaction between a quark and
an antiquark: (time runs from left to right!)
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If we use Fierz transformations (s. Notes!) to rewrite the
interaction identically, we can save work and calculate only the first
(“direct”) diagram!

LI =
1

2
(LI + LI,Fierz) = Gπ

[

(

ψψ
)2

+
(

ψiγ5~τψ
)2

]

+ other qq channels

where Gπ = 2
9G. This is the most familiar form of the NJL model ,

since it shows the chiral symmetric interactions in the scalar (σ) and
pseudoscalar (π) qq channels, which are most important.

An example for other qq channels is the interaction in the vector meson (ω) channel:

−Gω

“

ψγµψ
”2

, where Gω = 1
9
G.

UA(1) symmetry breaking is described by another 4-Fermi interaction - the

“determinant interaction”. Its effect can be incorporated into a redefinition of the

constants Gπ , Gω .



Mean field approximation

❖ Introduction

❖ Motivations

❖ Lagrangian

❖ Lagrangian

❖ Mean field
approximation

❖ Gap equation

❖ Symmetry
breaking

❖ Mesons

❖ Pion form factor
❖ Quark distrubution
in pion

❖ Evolution

❖ Comments

8 / 23

Use the mean field (Hartree) approximation to define the
constituent quark mass M as an effect of the quark self energy:
Adding

(

−Mψψ + const
)

and subtracting again, we get:

L = L0 + Lres

where (writing only the scalar and pseudoscalar interaction terms)

L0 = ψ (i 6∇ −M)ψ + const

Lres = (M −m)ψψ +Gπ

[

(

ψψ
)2

+
(

ψiγ5~τψ
)2

]

− const

Now assume that there is a nonzero expectation value of ψψ in the
vacuum (“quark condensate ”):

ψψ = 〈ψψ〉+ : ψψ :

where the second term is the normal ordered product. Then
determine M and const by the requirements that Lres has no
c-number term and no linear term ∝: ψψ : (i.e., Lres is a “true”
residual 4-Fermi interaction).
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These requirements give
● the gap equation :

M = m− 2Gπ〈ψψ〉 = m+ 2iGπlimτ→0+

∫

d4k

(2π)4
TrSF (k)eik0τ

= m+ 48iGπM

∫

d4k

(2π)4
1

k2 −M2 + iǫ

(S(k) is the Feynman propagator of a quark with mass M .)
After regularization of the integral, this has to be solved for M .

● the constant term:

const = − (M −m)2

4Gπ

We finally get: L = L0 + Lres with

L0 = ψ (i 6∇ −M)ψ − (M −m)2

4Gπ

Lres = Gπ

[

(

: ψψ :
)2

+
(

: ψiγ5~τψ :
)2

]

+ other channels
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For the case m = 0, the gap equation has 2 solutions: (i) trivial
solution M = 0, (ii) nontrivial solution satisfying

1 = 48iGπ

∫

d4k

(2π)4
1

k2 −M2 + iǫ

Which is the “correct” solution? Compare the vacuum energy
densities E (“effective potentials”) for these 2 cases: From L0,

Evac(M) − Evac(M = 0) = −12

∫

d3k

(2π)3

(

√

M2 + k2 − k
)

+
M2

4Gπ
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If Gπ is larger than some critical value, the energy on the chiral
circle σ2 + ~π2 = M2/4G2

π is lower than for σ = ~π = 0. The choice
~π = 0 in the vacuum corresponds to spontaneous breaking of the
chiral symmetry, and the pion becomes a Goldstone boson (which
will be verified later).
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From Lres, we have the Feynman rule for the qq interaction in the
scalar and pseudoscalar channels (time runs from left to right):

2iGπ [(1)γδ(1)αβ − (γ5~τ)γδ(γ5~τ)αβ ]

Then the equation for the qq scattering matrix (Bethe- Salpeter
equation ) becomes for fixed total 4-momentum pµ:

Tγδ,αβ(p) = Kγδ,αβ +

∫

d4k

(2π)4
Kγδ,ǫλSǫ′ǫ(k)Sλλ′(p+ k)Tλ′ǫ′,αβ(p)
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Inserting the form Kγδ,αβ = C ΓγδΓαβ, where C is a constant and Γ
a matrix, and assuming the solution of the form

Tγδ,αβ(p) = t(p) ΓγδΓαβ

we get for the scalar function t(p) the simple equation:

t(p) = C − iC Π(p2) t(p) ⇒ t(p) =
C

1 + iCΠ(p2)

with the “bubble graph ” (polarization propagator)

Π(p2) ≡ i

∫

d4k

(2π)4
Tr [ΓS(p+ k)ΓS(k)]

t(p) has a pole at p2 = µ2 if 1 + iCΠ(µ2) = 0.
σ channel ⇒ Γ = 1, C = 2iGπ; π channel ⇒ Γ = γ5τ, C = −2iGπ.
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Expanding Π(p2) near the pole as
Π(p2) = Π(µ2) + (p2 − µ2)Π′(µ2) + . . . , we see that near the pole

t(p) → ig2

p2 − µ2

where g2 ≡ (−1/Π′(µ2)).

This looks like the exchange of an elementary meson! Therefore, it
is natural to interpret µ as the meson mass and g as the
quark-meson coupling constant .
For the case of pion (Γ = γ5τ ): By comparing the pion pole
condition 1 + 2GπΠπ(m2

π) = 0 to the gap equation for m = 0 (exact
chiral symmetry), it is easy to see that m2

π = 0 ⇒ Pion is really the
Goldstone boson .
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Definition of electromagnetic current of pion :

1
√

4EpEp′

∫

d4z e−iq·z〈p′|ψ(z)γµ

(

1

6
+
τ3
2

)

ψ(z)|p〉

≡ (2π)
4
δ(4)(p′ − p− q)jµ(q)

Here we use covariant normalization of states:
〈p′|p〉 = 2(2π)3Epδ

(3)(p′ − p), where Ep =
√

p2 +m2
π.

According to Mandelstam’s theory of bound state matrix elements,
the current jµ(q) can be calculated from Feynman diagrams :

The π+ charge form factor is then defined by

jµ(q) ≡ (p′ + p)µ

√

4EpEp′

Fπ(Q2) (Q2 ≡ −q2 > 0 for electron scattering)
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Inserting γ5τ+g at the left pion-quark vertex and γ5τ−g at the right
vertex, we obtain

jµ(q) =
1

√

4EpEp′

6ig2

∫

d4k

(2π)4
TrD [γ5S(p′ + k)γµS(p+ k)γ5S(k)]

This can be evaluated by using one of the regularization schemes
(see Notes!).

Check current conservation and charge conservation: By using elementary
Ward-like identities

qµ
`

S(k′)γµS(k)
´

= −

`

S(k′) − S(k)
´

S(k)γµS(k) = −

∂S(k)

∂kµ

we get

qµj
µ =

−g2
p

4EpEp′

g2
`

Ππ(p′2) − Ππ(p2)
´

= 0 (because p′2 = p2 = m2
π)

jµ(q = 0) =
−g2

2Ep

„

∂Ππ(p2)

∂pµ

«

=
pµ

Ep
(from definition of g2)
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“bare quarks” (dotted line) refers to the formula on previous slide using the proper-time cut-off, and “monopole”
(solid line) is the empirical pion form factor determined from experiment:
Fπ,emp = 1/(1 + Q2/(0.5GeV2)).

The following corrections due to intrinsic quark form factors (γµ → γµFq(Q2)) are also shown:
(i) pion cloud around quarks, and (ii) γ − ρ coupling (cf. Vector Meson Dominance model).
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If we set q = 0 in the formula for the current, and replace the quark
charge operator by the number operator for up quarks (1 + τ3)/2,
we get a “number sum rule ” for the up quark:

1

2Ep

〈p|ψ(0)γµ 1 + τ3
2

ψ(0)|p〉 = Nu

pµ

Ep

where Nu = 1 is the number of u-quarks in π+.
If we define the up-quark correlation function in the pion as

Mµ(p, k) = i

∫

d4ω eik·ω 〈p|ψ(0)γµ 1 + τ3
2

ψ(ω)|p〉

we can write the above number sum rule in the form

− i

∫

d4k

(2π)4
Mµ(p, k) = 2pµNu



Quark momentum distribution in π+ (2):

❖ Introduction

❖ Motivations

❖ Lagrangian

❖ Lagrangian

❖ Mean field
approximation

❖ Gap equation

❖ Symmetry
breaking

❖ Mesons

❖ Pion form factor
❖ Quark distrubution
in pion

❖ Evolution

❖ Comments

19 / 23

We see: The operator insertion γµ(1 + τ3)/2 counts the number of
u-quarks with all possible momenta ⇒ The operator insertion
Oµ

u ≡ γµ(1 + τ3)/2 · δ(x− kµ/pµ) will count the number of u-quarks
which have a fraction x of the momentum component pµ.
In the description of Deep Inelastic Scattering (DIS), one needs
the case µ = +. (Then k+ ≡ (k0 + k3)/

√
2 is the “light-cone

plus-component” of kµ.) We then get for the number of u-quarks
with fraction x of the pion momentum component p+:

fπ+

u (x) =
−i
2p+

∫

d4k

(2π)4
δ(x− k+

p+
)M+(p, k)

with normalization
∫ 1

0
fπ+

u (x)dx = Nu = 1.
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The distribution fπ+

u (x) is obtained from the above Feynman
diagram as:

fπ+

u (x)=
ig2

2p+

∫

d4k

(2π)4
Tr

[

γ5τ−S(p+ k)γ+ 1 + τ3
2

S(p+ k)γ5τ+S(k)

]

δ(x− k+

p+
)

We can perform the k− integral by residues, using

S(k)=
6k +M

k2 −M2 + iǫ
=
k−γ+ + k+γ− − k⊥ · γ⊥

2k+

(

Θ(k+)

k− − ek + iǫ
+

Θ(−k+)

k− − ek − iǫ

)

where ek = (k2
⊥

+M2)/2k+ and k⊥ = (k1, k2). The result is

fπ+

u (x) = 6g2

∫

d2k⊥
(2π)3

k2
⊥

+M2

[k2
⊥

+M2 −m2
πx(1 − x)]

2

In this simple valence quark picture of π+ we have fπ+

d
(x) = fπ+

u (x).

Experimental information comes from the DIS structure function

Fπ+

2 (x) = x
“

P

q e
2
q f

π+

q (x,Q2) +
P

q e
2
q f

π+

q (x,Q2)
”

, where q = u, d, . . . .

Concerning the Q2 dependence, see later comments.
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● solid line: NJL result on previous slide, using the invariant
mass cut-off scheme (see Notes!)

● dashed line: Q2 evolution up to 4 GeV2, assigning a low
energy scale Q2

0 = 0.18 GeV2 to the solid (NJL) line

● empirical distribution at Q2 = 4 GeV2
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● In NJL model, there are no gluons. But in QCD, a quark can
give momentum to a gluon, and the gluon to sea quarks, etc.

● Probability of gluon radiation depends on the “resolution
scale ” (Q2) in DIS: Probed with higher resolution, more quark
momentum appears to be carried by gluons.

● This Q2 dependence is calculable in perturbative QCD , if we
know fq(x) at a low resolution scale (Q2

0), where we can
assume that we have only quarks. This value Q2

0 defines the
energy scale of the NJL model, and is treated as a parameter
here.



Comments on the figures

❖ Introduction

❖ Motivations

❖ Lagrangian

❖ Lagrangian

❖ Mean field
approximation

❖ Gap equation

❖ Symmetry
breaking

❖ Mesons

❖ Pion form factor
❖ Quark distrubution
in pion

❖ Evolution

❖ Comments

23 / 23

● Fig.1: Solid lines: Dyson-Schwinger parametrizations, see: A. Holl et al, Phys. Rev. C 71 (2005), p.
065204; Eqs. (63), (64). The results do not depend much on the parameter ω if 0.3 < ω < 0.5. We
show the cases ω = 0.4 (case I) and ω = 0.5 (case II). (For other investigations on the infrared
enhancement, see: M.S. Bhagwat et al, Phys. Rev. C 68 (2003), 015203; C.S. Fischer et al, Phys. Rev.
D 67 (2003), 094020.) 1-loop perturbation theory (dotted line): αs(k) = 4π

β0

1

ln(k2/Λ2
QCD

)
,

β0 = 25/3, (Nf = 4), ΛQCD = 0.234 GeV.

● Fig.2: Here 3-momentum cut-off is used: |k| < Λ with Λ=0.59 GeV (to reproduce pion decay
constant). Chiral symmetry breaking possible for Gπ > π2/(6Λ2). The case Gπ = 6.92 GeV−2

corresponds to quark masses m = 6.0 MeV, M = 400 MeV.

● Fig.3: Here the proper-time cut-off is used: ΛUV = 0.64 GeV, ΛIR = 0.2 GeV. The constituent
quark mass is M = 0.4 GeV. The calculation follows closely that for the nucleon form factors in: T.
Horikawa et al, Nucl. Phys. A 762 (2005), p. 102, where the corrections from pion cloud and vector
mesons are discussed in detail. Measurements of Fπ at low Q2 are done by scattering pions off the
electrons in liquid hydrogen, and by the reaction p(e, e′π+)n (pion electroproduction) at higher Q2

(at JLab), see: V. Tadevosyan et al; Phys. Rev. C75 (2007), p. 055205.

● Fig.4: See W. Bentz et al, Nucl. Phys. A 651 (1999), p. 143; Fig. 4. Here the constituent quark mass
M = 0.3 GeV, and the “invariant mass cut-off” (or “Lepage-Brodsky cut-off”) is used (Λ = 1.47 GeV
in the figure), which is essentially equivalent to the 3-momentum cut-off scheme with Λ = 0.67 GeV.
The computer code for the Q2 evolution is taken from: M. Miyama, S. Kumano, Comp. Phys. Commun.
94 (1996), p. 185. (We use the next-to-leading-order (NLO) evolution with ΛQCD = 0.25 GeV.) The
empirical quark distribution in the pion is taken from: P.J. Sutton et al, Phys. Rev. D 45 (1992) 2349. It
is extracted from inclusive Drell-Yan pair production: π±N → µ+µ−X, which mainly arises from
the annihilation of a quark in the nucleon with an antiquark in the pion.
[For a good introduction to deep inelastic scattering and Q2 evolution, see: R.L. Jaffe, 1985 Los
Alamos School on Relativistic Dynamics and Quark Nuclear Physics, ed. M.B. Johnson and A.
Pickleseimer (Wiley, new York, 1985).]
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